MTH251	Sample Final Exam	Fall 2018
Name:	Date:	

Show all work if full or partial credit is desired. You may use a graphing calculator or Desmos on the second part. If Desmos is used, then the device must be in airplane-mode (i.e., no wifi, cellular, or Bluetooth connections). No notes, books or websites allowed.

Part 1 No Calculator

1.
$$\lim_{x \to -3} (x^2 - 2x + 5) =$$
2.
$$\lim_{x \to 0+} \frac{1}{x} =$$
3.
$$\lim_{x \to \infty} \frac{1}{x} =$$
4.
$$\lim_{x \to 5} \frac{x^2 - 25}{x - 5} =$$
5.
$$f(x) = 7, \text{ so } f'(x) =$$
6.
$$g(x) = x, \text{ so } \frac{d}{dx}[g(x)] =$$
7.
$$q(t) = t^3, \text{ so } \frac{d}{dt}[q(t)] =$$
8.
$$\frac{d}{d\theta}[\cos(\theta)] =$$

9. Use the limit definition of the derivative to find the slope of the tangent line to the curve $r(x) = \frac{2}{x}$ at x = -3.

Find the following derivatives.

10.
$$\frac{d}{dx} [2x^2 - 3x + 5] =$$

11. $\frac{d}{dx} [(x - 3)^2] =$
12. $\frac{d}{dx} [3\sqrt{x}] =$
13. $\frac{d}{dx} [(x^2 + 3x + 6)(x^2 - 3x \pm 5)] =$
14. $\frac{d}{dx} [\frac{x^2 + 3}{x + 3}] =$
15. $\frac{d}{dx} [\cos(x)\sin(x)] =$
16. $\frac{d}{dx} [\sqrt{4 - x^2}] =$
17. $\frac{d}{dx} [\{\sin(\pi x + 1)\}^3] =$
18. $\frac{d}{dx} [\frac{e^x - e^{-x}}{2}] =$
19. $\frac{d}{dx} [\arccos(x)] =$
20. $\frac{d}{dx} [\ln(5x)] =$
21. $\frac{d}{dx} [\ln(\cos(x))] =$
22. $\frac{d}{dx} [2 \cdot 3^x] =$

Fun with Derivatives

23. Calculate the slope of the tangent line (rate of change) to $f(x) = \frac{3}{x-1}$ at x = -1 by finding the derivative function.

a.
$$\frac{d}{dx}[f(x)] =$$

- b. f'(-1) =
- c. The equation of the tangent line is _____
- d. Sketch a graph of f(x) on the interval [-3, 1] along with the tangent line when x = -1. Be sure to label and scale the axes, and use a ruler if necessary.

- 24. A ball is dropped from a height of 25 meters. Its height above ground (in meters) t seconds later is given by $h(t)=-4.9t^2+25.$
 - a. At what time does the ball hit the ground?
 - b. What is the instantaneous velocity of the ball when it hits the ground?
 - c. What is the average velocity during its fall?
- 25. Find the slope of the tangent line to the curve $x^3 9xy + y^3 = 0$ at the point (2, 4).

26. Use logarithmic differentiation to find $rac{dy}{dx}$ if $y=\left(1+x
ight)^{rac{1}{x}}.$

27. If $P(t) = 1000e^{0.3t}$ describes a mosquito population after t days, what is the rate of change of the population after 4 days?

Part 3: Chapter 4

28. Consider the volume of a sphere, $V = \frac{4}{3}\pi r^3$. Suppose that you fill the balloon with air at a constant rate, $100 \frac{\text{cm}^3}{\text{s}}$. a. At what rate does the radius increase when the radius is 2cm?

b. At what rate does the radius increase when the radius is 4cm?

- 29. The diameter of a spherical ball bearing was measured to be 5mm with a possible error of 0.05mm. Use linear approximation (aka differentials) to **estimate** the maximum error in the volume of the ball bearing.
- 30. Consider the function $f(x) = x^3 7x^2 + 8x + 1$ a. Find $\displaystyle rac{dy}{dx}.$
 - b. Find any critical values.
 - c. Use the first derivative to identify any intervals where the function is increasing.
 - d. Use the first derivative to identify any intervals where the function is decreasing.

e. Find
$$\frac{d^2y}{dx^2}$$
.

- f. Use the second derivative and the critical values to find any extreme values.
- g. Use the second derivative to identify intervals where the function is concave up.
- h. Use the second derivative to identify intervals where the function is concave down.
- i. Identify any inflection points.

31. Consider the function
$$f(x)=rac{x^2+7x+10}{x+1}$$
 a. Find $rac{dy}{dx}.$

- b. Find any critical values.
- c. Use the first derivative to identify any intervals where the function is increasing.
- d. Use the first derivative to identify any intervals where the function is decreasing.

e. Find
$$\frac{d^2y}{dx^2}$$
.

- f. Use the second derivative and the critical values to find any extreme values.
- g. Use the second derivative to identify intervals where the function is concave up.
- h. Use the second derivative to identify intervals where the function is concave down.
- i. Identify any asymptotes.

32. Consider an open-top box with a square base and a volume of 216 in.³. Suppose the cost of the material for the base is 20¢/ in.² and the cost of the material for the sides is 30¢/in.² and we are trying to minimize the cost of this box. Write the cost as a function of the side lengths of the base. (Let *x* be the side length of the base and *y* be the height of the box.)

33. Use L'Hôpital's rule to find $\lim_{x
ightarrow\infty} rac{x^2}{e^x}.$

34. Use Newton's method to approximate a root of $f(x) = x^3 - 3x + 1$ on the interval [1, 2]. Let $x_0 = 2$ and find x_1, x_2, x_3, x_4 , and x_5 .